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Abstract —Simple closed-form expressions for the resonant frequency

and electromagnetic field distribution for various modes of the open- and

closed-ring microstrip resonators are derived by utilizing the perturbation

analysis of the equivalent curved waveguide model. These results are shown

to be in good agreement with the exactly computed vahres obtained by the

snlutiou of the eigenvafue equation for the equivalent waveguide model and

the experimental data. The effect of gap capacitance on the eigenvalues of

the open-ring resonator is atso examined.

I. INTRODUCTION

M ICROSTRIP annular ring resonators have been used

in recent years for various applications including

microwave filters and planar antenna elements [1]–[9]. The

basic properties of these structures, that is, the resonant

frequency and the field distribution for various modes,

have been evaluated by utilizing a number of techniques

including the numerical solution of the eigenvalue problem

associated with the equivalent two-dimensional curved

waveguide model [1]–[9]. Closed-form solutions expressing
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the resonant frequencies and fields in terms of the geome-

try of the structure (or the corresponding model) are not

yet available for the design of such structures except for

the simplified case where the effect of the curvature is I

totally neglected. In this paper, simple closed-form expres-

sions for the resonant frequencies and the electromagnetic

fields are derived by utilizing the perturbation analysis of

the equivalent curved waveguide [10], [11] with electric and

magnetic walls. The accuracy and range of validity of the

results are also examined together with the effects of small

gap angles on the resonant characteristics of the open-ring

structures.

II. THEORY

The magnetic wall curved waveguide models for the

open- and closed-ring microstrip resonators are shown in

Fig. 1. The model is characterized by its effective dimen-

sions and the medium permittivity which are determined

from the solution of the corresponding microstripline prob-

lem [12], and the inclusion of the effect of curvature on the

model [3], [4]. The model assumes that the substrate height

h is small (h<< A, the wavelength) and, hence, the fields

are constant along the z-direction. The solutions of interest

for fields are then the TM modes with respect to the
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Fig. 1. (a) The mlcrostnp ring resonators. (b) Cross-sectional wew of
the wavegmde model. — Electric walls. --- Magnetic walls.

Fig. 2. The curved coordinate system for the model

direction z. The two-dimensional wave equation for Ez and

the boundary conditions in the curved orthogonal coordi-

nate system as characterized by UI = y, Uz = z, and U3 =s

= R,@ (Fig. 2) with corresponding metric coefficients AI =

hz =1 and ha =1 + y/Regiven as [10]

()+k21+:2EZ=0 (1)
e

dE
~= Oaty=+~.
f3y

(2)

Ez is a single-valued function of + or s for closed-ring

resonator or

E:(y, @)= E:(y, @+27r) (3)

dEz
= O at @= * ~ for open-ring resonator. (4)

d+ or i3s

In the above equations, W, and R. are the effective width

and radius of the ring, respectively, and a is the gap angle.

A perturbation solution for the above boundary value

problem can be found by expanding Ez and the propaga-

tion constants ~ along s in a power series in curvature

radius as shown in [10] for a curved rectangular waveguide

with electric walls. That is, we expand E, and ~ as

[

Ez=Ae-Jfi’ E, 0+$+ ~+...
R: 1

(5a)
e

[

/?2=P:l+#+~+ .””
1

(5b)
e=

where E,O and PO are the solution for the straight wave-

guide problem (R + m), E,l, EZ2, ” “ “, are the expansion

functions for a given mode, and Bl, B2, ” “ “, are constants

of expansion of /? in the power series. The solutions for the

corresponding straight microstrip problem (R + CD) for

various modes are

EzO=cos[fi(y-~)]

%=k; -$, p=o,l,2, -.. .
e

(6)

The boundary conditions along s as given by (3) and (4)

imply that

/3Re=q for the closed-ring resonator

——
‘R’ = (2Tq: a)

for the open-ring resonator (7)

with q =0,1,2..” .

Substitution of (5) into (1) and comparing the like

powers of R, leads to the solution for the expansion

functions El, EZ2,. . “, and constants Bl, B2,. “ “, as shown

by Lewin et al, [10]. The degree of accuracy and the order

of complexity of the expressions obviously depends on the

number of higher order terms.

The first-order solution for the eigenvalues and fields

which includes only one nonzero higher order term in the

expansion are given by the following expressions for vari-

ous TM.,~O modes. For the TM~OO modes with ideal gap

a + O (i.e., an open-ring resonator with an infinitesimal

gap represented by a magnetic wall), we get

‘eRe=12’w-=-‘8)
and

{ [4 311+?::4EZ=A l+k~R~[4c ‘–g

(9)

for any a for all TM~oO modes. Here t = We/R= is the

normalized width, and { = r – R,/ We varies from – 1/2

to + 1/2 as we go from the inner to the outer radius. For

the higher order TMM.O modes, the resonant frequencies

are given by
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where

~=21+n%2 q

12n47r4
t

[
B= 1+ &(12 -n2m2) 1
c=(Yr+”2”2(~)-

The first-order perturbation solution for E, is found to be

where E,O and & are given by (5) and y = r – R ~.

The resonance frequencies of open-ring resonators with

finite gap angle a are given by

(12)

where (k,ll, )la+ o is given by (8) and (10).

The integer m in the above equations only assumes even

values including zero for the case of closed-ring structures.

In general, the above equations (8) and (10) lead to the

normalized resonance frequencies for the case of an ideal

gap with a ~ O. There are twice as many modes for the

open-ring resonators than for the closed-rings. These modes

correspond to even and odd symmetry with respect to the

axis of the gap. The eigenvalues of the closed-ring reso-

nates corresponds to even modes only, i.e., even modes of

open-ring structures with respect to the axis of symmetry.

III. RESULTS

The normalized resonance frequencies for a given struc-

ture can be evaluated from (8) and (10) for axial, radial,

and higher order modes. For TMMW nodes, these are

plotted in Fig. 3 as a function of the ratio of the effective

width to the effective radius together with the computed

values for the two-dimensional model having an ideal gap

with angle a ~ O. The open-ring structure supports both

the even and the odd modes with respect to the axis of the

gap, whereas the closed-ring structure supports solutions

corresponding to even values of m only. As seen from the

figure, the perturbation expression does lead to fairly accu-

rate results for the resonance frequencies. The accuracy

depends on the curvature and is seen to deteriorate for

higher order modes for larger W,/R,. For example, the

perturbation solutions are within 2 percent of the exactly

computed values for the fundamental mode with m = 1 and

n = O for W@/R, as high as 1.8 and up to the sixth

axial-quasi TEM mode for We/R, =1. For higher order

TM~Ho modes, the perturbation solutiops as given by (10)

do not exist for a given n for a range of We/R@ because of

the quadratic nature of the equation for the eigenvalues.
The solution is found to be very close to the computed
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Fig. 3, Normalized resonance frequencies for the quasi-T13M axial
(TM,,,OO) modes as a function of the normalized curvature W,/R, for
an idealized gap with a + 00. — Perturbation solutions. --- Solu-
tions of the exact eigenvalue problem.
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Fig. 4. Normalized resonance frequency of the higher order TM,,,.O
modes. Dashed curves represent the solution of the eigenvalue equation
for TMO,,O modes.

values over the range of We/R ~ where B 2> 4A C. In Fig.

4, the normalized resonant frequencies for various modes

are plotted as a function of the ratio of width to radius

based on a simplified expression derived from (10) for all

n # 1 and a semi-empirical formula for n =1. This sim-

plified expression, which does lead to solutions for all

values of n and m for the whole range of W, /R,, is found

to be

‘eRf=’=w+Hw~ (’-3 1
(13)

The exact solution for the corresponding eigenvalue prob-

lem for TMo~o modes are also shown in the figure to
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Fig 5. Normalized electrlc-field variation across the ring for typical
lower order modes for w,/R, = 1.2. — Perturbation solution, ---
Exact solution for the model.

demonstrate that the perturbation solution of (13) is indeed

close to the computed values for these higher order modes.

The variation of the normalized electric field as given by

(9) and (11) is shown in Fig. 5. Again, the computed values

found from the solution of the exact eigenvalue problem

associated with the magnetic wall model in cylindrical

coordinate systems are plotted on the same figures for

comparison. The same statements regarding the accuracy

of the perturbation solutions hold here as those made for

the eigenvalues. The magnetic-field components are easily

found in terms of E, from the Maxwell’s equation. It

should be noted that these field distributions correspond to

the solution of the magnetic wall model boundary value

problem and not the real structure. The solutions do,

however, provide a measure of the actual field and can be

useful in estimating certain parameters, such as the resona-

tor Q and radiation characteristics.
The perturbation solutions have been compared with the

exact solution corresponding to the magnetic wall model

since the validity of the latter has been established from

various experimental results [1]–[4], [9] for both closed-

and open-ring resonators. For example, Fig. 6 shows the

resonant frequencies calculated from (8) and (12) and the

measured values for a set of open-ring resonators with
a =15 0. It should be mentioned that these perturbation

solutions for eigenvalues and fields do lead to a significant

improvement in the accuracy of the results as compared to

the solutions corresponding to the straight waveguide

model.

The effect of gap capacitance for the open-ring resona-

tors has been experimentally seen to be not very significant
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Fig. 6 Resonance frequencies versus width for a given rmg radmrs and
the gap angle. c, = 2.23, h = 0.79 mm, R =16 mm, a = 15°. Solid

points ● represent measured values.
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Fig 7 (a) A model for including the stray fields m

equivalent transmission-line model.
the gap, (b) The

unless the gap angle is small [9]. For modes corresponding

to n = O, i.e., the quasi-TEM modes on the resonator, the

effect of the gap can be estimated by considering the line

and the gap equivalent circuit shown in Fig. 7(a). The stray

field at the end of the even-mode capacitance represented

by Cf can be easily included in the analysis by defining an

effective length as

Cf Zo
l’=(27r-a)Re+2——

‘AZ”
(14)

The effect of gap capacitance Cg is then estimated by

considering the resonator line having phase constant ~,

characteristic impedance 20 connected via Cg as shown in

Fig. 7(b). It is easily seen that the resonance frequency
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Fig. 8. Gap cd.pacitance Cg as a function of the gap angle for two typical
cases. c. = 2.23, h = 0.79 mm, R = 16.0 mm, X represents values com-
puted from the experimental data.

must then be a solution of

sin~l’= 2tiCgZO(l –cos~l’). (15)

Equation (15) is satisfied for two possible conditions:

@’=2n~, n is an integer (16a)

or

(16b)

Equations (16a) and (16b) lead to even- and odd-mode

resonances, respectively. As seen from these equations, and

as should be expected from the field distribution, the gap

capacitance Cg has no effect on the even modes. These are

the only modes excited on closed annular rings. Whereas

for odd modes, the resonance frequency is decreased as

shown by (16b). The smaller the gap angle, the larger the

gap capacitance, and in the limit a ~ O, Cg ~ ce and only

the even modes can exist since, for this case, (16b) degener-

ates into (16a).

cg and Cf can be found numerically by solving for the

static capacitance of the closed-ring and the capacitance

matrix of an open-ring structure with two gaps. The behav-

ior of Cg as a function of the gap angle computed by

utilizing. a straightforward finite-element program is il-

lustrated in Fig. 8 for two cases of the ring widths. This Cg

was also evaluated from the experimental data for the

resonance frequencies for the even and odd modes for

these cases from (16a) and (16b) in order to confirm the

validity of this model. These values are also shown in Fig.

8 and are seen to agree well with the computed values. The

effect of gap capacitance is not very significant unless the

gap angle is less than about 50. However, this gap capaci-

tance is dependent on the gap angle and substrate dielec-

tric constant and height for given ring dimensions, and it

can also be controlled or increased by loading the gap with

a capacitive element such as an interdigital capacitor. This

effect of gap capacitance on the resonance frequency of the

fundamental mode can be utilized to design compact reso-

nators or resonators with desired physical dimensions.

IV. CONCLUDING REMARKS

Simple closedl-form expressions for the resonant frequen-

cies and field distribution for various modes of the open-

and closed-ring microstrip resonators have been derived by

utilizing the perturbation analysis of the two-dimensional

magnetic wall curved waveguide model. These expressions

together with the solution for the parameters of the wave-

guide model for curved microstrips can be used directly to

design these resonators for various applications as micro-

wave circuit elements and also to help study their radiation

characteristics. The results have been shown to be quite

accurate, except when the ring width is near its limiting

value where the ring degenerates into a disc.
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Characteristics of Metal–Insulator-
Semiconductor Coplanar Waveguides

for Monolithic Microwave Circuits

ROBERTO SORRENTINO, MEMBER, IEEE, GIORGIO LEUZZI, AND AGNES SILBERMANN

Ab.!tract —Using a full-wave mode-matching technique, an extensive

analysis is.presented of the slow-wave factor, attenuation, and characteris-

tic impedance of a metal-insulator–semiconductor coplanar waveguide

(MISCPW) as functions of the various structural parameters. Design

criteria are given for low-attenuation slow-wave propagation. By a proper

optimization of the structure, performances comparable with or even betier

than those of alternative structures proposed in the literature are theoreti-

cally predicted.

I. INTRODUCTION

M ONOLITHIC MICRfJWAVE integrated circuits,
using both Si and GaAs technologies, have an in-

creasing impact in a number of applications because of

higher reliability y, reproducibility, and potentially lower

costs [1]. It has already been pointed out that accurate

analysis techniques are required in order to reduce neces-

sity for trimming, which is more difficult than for hybrid

integrated circuits. Even in this case, however, full-wave

analyses are necessary to study propagation effects in

active devices [2]. Gigabit logic is another area where
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propagation effects have to be accounted for through the

use of accurate theoretical analyses [3].

Slow-wave propagation in metal–insulator–semiconduc-

tor and Schottky-contact planar transmission lines has

been both experimentally observed and theoretically ex-

plained from different points of view [3]-[10]. The slow-

wave properties of such transmission lines can be used to

reduce the dimensions and cost of distributed elements to

realize delay lines or, when Schottky-contact lines are used,

for variable phase shifters, voltage-tunable filters, etc.

A drawback of these slow-wave structures is the loss

associated with the semiconducting layer. As an example,

the GaAs metal–insulator–semiconductor coplanar wave-

guide (MISCPW) experimented by Hasegawa and his co-

workers [6], [11] presented an attenuation greater than 1

dB/mrn, with a slowing factor of about 30 at the frequency

of 1 GHz. Since losses and slow-wave effects depend on

the distribution of the electromagnetic field inside the

various regions of the structure, accurate analyses are

required to determine the most favorable conditions for the

practical use of such transmission lines.

An extensive study of the properties of MISCPW, based

on a full-wave technique, is presented in this paper. The

influence of the various structural parameters on the char-

acteristics of the structure is investigated, together with the

effect of the addition of a back conducting plane, which
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