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Perturbation Analysis and Design Equations
for Open- and Closed-Ring Microstrip
‘Resonators

VIJAI K. TRIPATHI, MEMBER, IEEE, AND INGO WOLFF, MEMBER, IEEE

Abstract —Simple closed-form expressions for the resonant frequency
and electromagnetic field distribution for various modes of the open- and
closed-ring microstrip resonators are derived by utilizing the perturbation
analysis of the equivalent curved waveguide model. These results are shown
to be in good agreement with the exactly computed values obtained by the
solution of the eigenvalue equation for the equivalent waveguide model and
the experimental data. The effect of gap capacitance on the eigenvalues of
the open-ring resonator is also examined.

I. INTRODUCTION

ICROSTRIP annular ring resonators have been used

in recent years for various applications including
microwave filters and planar antenna elements [1]-[9]. The
basic properties of these structures, that is, the resonant
frequency and the field distribution for various modes,
have been evaluated by utilizing a number of techniques
including the numerical solution of the eigenvalue problem
associated with the equivalent two-dimensional curved
waveguide model [1]-[9]. Closed-form solutions expressing
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the resonant frequencies and fields in terms of the geome-
try of the structure (or the corresponding model) are not
yet available for the design of such structures except for .
the. simplified case where the effect of the curvature is
totally neglected. In this paper, simple closed-form expres-
sions for the resonant frequencies and the electromagnetic
fields are derived by utilizing the perturbation analysis of
the equivalent curved waveguide [10], [11] with electric and
magnetic walls. The accuracy and range of validity of the
results are also examined together with the effects of small
gap angles on the resonant characteristics of the open-ring
structures.

II. THEORY

The magnetic wall curved waveguide models for the
open- and closed-ring microstrip resonators are shown in
Fig. 1. The model is characterized by its effective dimen-
sions and the medium permittivity which are determined
from the solution of the corresponding microstripline prob-
lem [12], and the inclusion of the effect of curvature on the
model [3], [4]. The model assumes that the substrate height
h is small (h < A, the wavelength) and, hence, the fields
are constant along the z-direction. The solutions of interest
for fields are then the TM modes with respect to the
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Fig. 1. (a) The mucrostrip ring resonators. (b) Cross-sectional view of
the wavegmde model. —— Electric walls. - -- Magnetic walls.

Fig. 2. The curved coordinate system for the model.

direction z. The two-dimensional wave equation for E, and
the boundary conditions in the curved orthogonal coordi-
nate system as characterized by u; = y, u, =z, and u; =s
= R ¢ (Fig. 2) with corresponding metric coefficients /; =
h,=1and h, =1+ y/R, given as [10]
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E. is a single-valued function of ¢ or s for closed-ring
resonator or
E(y,¢)=E(y.,9+2m)
JE.
d¢ or ds

(3)
=0atp=+ % for open-ring resonator. (4)

In the above equations, W, and R, are the effective width
and radius of the ring, respectively, and «a is the gap angle.

A perturbation solution for the above boundary value
problem can be found by expanding £, and the propaga-
tion constants B along s in a power series in curvature
radius as shown in [10] for a curved rectangular waveguide
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with electric walls. That is, we expand E, and B as

E::l E:l
R '\“F'*‘"'} (53)
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where E,, and B, are the solution for the straight wave-
guide problem (R —» ), E,4, E,,,- -+, are the expansion
functions for a given mode, and By, B,,- - -, are constants
of expansion of 8 in the power series. The solutions for the
corresponding straight microstrip problem (R — o) for
various modes are
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The boundary conditions along s as given by (3) and (4)
imply that

BR,=¢q for the closed-ring resonator
BR, = @g{—) for the open-ring resonator (7)
with ¢=0,1,2---.

Substitution of (5) into (1) and comparing the like
powers of R, leads to the solution for the expansion
functions E,, E,,,- - -, and constants B,, B,,- - -, as shown
by Lewin er al. [10]. The degree of accuracy and the order
of complexity of the expressions obviously depends on the
number of higher order terms.

The first-order solution for the eigenvalues and fields
which includes only one nonzero higher order term in the
expansion are given by the following expressions for vari-
ous TM,,,,, modes. For the TM,,;,, modes with ideal gap
a-0 (le, an open-ring resonator with an infinitesimal
gap represented by a magnetic wall), we get

1,2
A e

k.R,= 1251228 [} 96 mit
¢ S (12—

and
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2 27—a)
(9)

for any « for all TM, ,, modes. Here £=W, /R, is the
normalized width, and {=7r— R, /W, varies from —1/2
to +1/2 as we go from the inner to the outer radius. For
the higher order TM,,,, modes, the resonant frequencies
are given by
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The first-order perturbation solution for E, is found to be
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where E, and B, are given by (5) and y=r — R,
The resonance frequencies of open-ring resonators with
finite gap angle o are given by
2T
>0 27 —a)

where (k,R )|, ¢ is given by (8) and (10).

The integer m in the above equations only assumes even
values including zero for the case of closed-ring structures.
In general, the above equations (8) and (10) lead to the
normalized resonance frequencies for the case of an ideal
gap with a« = 0. There are twice as many modes for the
open-ring resonators than for the closed-rings. These modes
correspond to even and odd symmetry with respect to the
axis of the gap. The eigenvalues of the closed-ring reso-
naters corresponds to even modes only, i.e., even modes of
open-ring structures with respect to the axis of symmetry.

k€R€= (keRe)l (12)

ITII. RESULTS

The normalized resonance frequencies for a given struc-
ture can be evaluated from (8) and (10) for axial, radial,
and higher order modes. For TM,,, nodes, these are
plotted in Fig. 3 as a function of the ratio of the effective
width to the effective radius together with the computed
values for the two-dimensional model having an ideal gap
with angle a — 0. The open-ring structure supports both
the even and the odd modes with respect to the axis of the
gap, whereas the closed-ring structure supports solutions
corresponding to even values of m only. As seen from the
figure, the perturbation expression does lead to fairly accu-
rate results for the resonance frequencies. The accuracy
depends on the curvature and is seen to deteriorate for
higher order modes for larger W,/R,. For example, the
perturbation solutions are within 2 percent of the exactly
computed values for the fundamental mode with m =1 and
n=0 for W,/R, as high as 1.8 and up to the sixth
axial-quasi TEM mode for W, /R, =1. For higher order
TM,,,,o modes, the perturbation solutions as given by (10)
do not exist for a given n for a range of W, /R, because of
the quadratic nature of the equation for the eigenvalues.
The solution is found to be very close to the computed
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Fig. 3. Normalized resonance frequencies for the quasi-TEM axial

(TM,,,40) modes as a function of the normalized curvature W, /R, for

an idealized gap with @« —» 0°. —— Perturbation solutions. --- Solu-
tions of the exact eigenvalue problem.
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Fig. 4. Normalized resonance frequency of the higher order T™M,, o
modes. Dashed curves represent the solution of the eigenvalue equation
for TM,,o modes.

values over the range of W, /R, where B> > 44C. In Fig.
4, the normalized resonant frequencies for various modes
are plotted as a function of the ratio of width to radius
based on a simplified expression derived from (10) for all
n+1 and a semi-empirical formula for n=1. This sim-
plified expression, which does lead to solutions for all
values of n and m for the whole range of W, /R, is found

to be
12
(1— n2772) ] .

|5V (%)
(13)

The exact solution for the corresponding eigenvalue prob-
lem for TM,, modes are also shown in the figure to
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Fig 5. Normalized electnic-field variation across the ring for typical
lower order modes for W, /R,=1.2. —— Perturbation solution. ---
Exact solution for the model.

demonstrate that the perturbation solution of (13) is indeed
close to the computed values for these higher order modes.

The variation of the normalized electric field as given by
(9) and (11) is shown in Fig. 5. Again, the computed values
found from the solution of the exact eigenvalue problem
associated with the magnetic wall model in cylindrical
coordinate systems are plotted on the same figures for
comparison. The same statements regarding the accuracy
of the perturbation solutions hold here as those made for
the eigenvalues. The magnetic-field components are easily
found in terms of E, from the Maxwell’s equation. It
should be noted that these field distributions correspond to
the solution of the magnetic wall model boundary value
problem and not the real structure. The solutions do,
however, provide a measure of the actual field and can be
useful in estimating certain parameters, such as the resona-
tor Q and radiation characteristics.

The perturbation solutions have been compared with the
exact solution corresponding to the magnetic wall model
since the validity of the latter has been established from
various experimental results [1]-[4], [9] for both closed-
and open-ring resonators. For example, Fig. 6 shows the
resonant frequencies calculated from (8) and (12) and the
measured values for a set of open-ring resonators with
a=15°. It should be mentioned that these perturbation
solutions for eigenvalues and fields do lead to a significant
improvement in the accuracy of the results as compared to
the solutions corresponding to the straight waveguide
model.

The effect of gap capacitance for the open-ring resona-
tors has been experimentally seen to be not very significant
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Fig. 6 Resonance frequencies versus width for a given ning radius and
the gap angle. ¢, =223, h=0.79 mm, R=16 mm, a=15°. Solid
points e represent measured values.
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Fig 7 (a) A model for including the stray fields m the gap. (b) The

equivalent transmussion-line model.

unless the gap angle is small [9]. For modes corresponding
to n=0, i.e., the quasi-TEM modes on the resonator, the
effect of the gap can be estimated by considering the line
and the gap equivalent circuit shown in Fig. 7(a). The stray
field at the end of the even-mode capacitance represented
by C; can be easily included in the analysis by defining an
effective length as

C.Z
I'= (27— a)R, +2—-2.
Mot

(14)

The effect of gap capacitance C, 1s then estimated by
considering the resonator line having phase constant S,
characteristic impedance Z, connected via C, as shown in
Fig. 7(b). It is easily seen that the resonance frequency
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Fig. 8. Gap cdpacitance C, as a function of the gap angle for two typical
cases. €, =2.23, h=0.79 mm R =16.0 mm, X represents values com-
puted from the experrrnental data.

must then be a solution of

sin Bl = 26C, Zy (1~ cos I’).

Equation (15) is satisfied for two possible condmons

Bl —2n77,

(15)

nis an 1nteger (16a)

or

cot ’821 =2wC,Z,.
Equations (16a) and (16b) lead to even- and odd-mode
resonances, respectively. As seen from these equations, and
as should be expected from the field distribution, the gap
capacitance C, has no effect on the even modes. These are
the only modes excited on closed annular rings. Whereas
for odd modes, the resonance frequency is decreased as
shown by (16b). The smaller the gap angle, the larger the
gap capacrtance and in the limit « — 0,C, = o0 and only
the even modes can exist smce for this case (16b) degener-
ates into (16a).

C, and C; can be found numerically by solving for the
static capacitance of the closed-ring and the capacitance
matrix of an open-ring structure with two gaps. The behav-
ior of C as a function of the gap angle computed by
utilizing, a strarghtforward finite-element program is il-
lustrated in Fig. 8 for two cases of the ring widths. This C,
was also evaluated from the experimental data for the
resonance frequencies for the even and odd modes for
these cases from (16a) and (16b) in order to confirm the
validity of this model. These values are also shown in Fig.
8 and are seen to agree well with the computed values. The
effect of gap capacitance is not very significant unless the
gap angle is less than about 5°. However, this gap capaci-
tance is dependent on the gap angle and substrate dielec-
tric constant and height for given ring dimensions, and it
can also be controlled or increased by loading the gap with

(16b)

a capacitive element such as an interdigital capacitor. This

effect of gap capacitance on the resonance frequency of the
fundamental mode can be utilized to design compact reso-
nators or resonators with desired physical dimensions.

1V. CONCLUDING REMARKS

Simple closed-form expressions for the resonant frequen-
cies and field distribution for various modes of the open-
and closed-ring microstrip resonators have been derived by
utilizing the perturbation analysis of the two-dimensional
magnetic wall curved waveguide model. These expressions
together with the solution for the parameters of the wave-
guide model for curved microstrips can be used directly to
design these resonators for various applications as micro-
wave circuit elements and also to help study their radiation
characteristics. The results have been shown to be quite
accurate, except when the ring width is near its limiting
value where the ring degenerates into a disc.
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Characteristics of Metal—Insulator—
Semiconductor Coplanar Waveguides
for Monolithic Microwave Circuits

ROBERTO SORRENTINO, MEMBER, IEEE, GIORGIO LEUZZI, AND AGNES SILBERMANN

Abstract —Using a full-wave mode-matching technique, an extensive
analysis is.presented of the slow-wave factor, attenuation, and characteris-
tic ithped_ance of a metal-insulator-semiconductor coplanar waveguide
(MISCPW) as functions of the various structural parameters. Design
criteria are given for low-attenuation slow-wave propagation. By a proper
optimization of the structure, performances comparable with or even better
than those of alternative structures proposed in the literature aré theoreti-
cally predicted.

I. INTRODUCTION

R A ONOLITHIC MICROWAVE integrated circuits,

using both Si and GaAs technologies, have an in-
creasing impact in a number of applications because of
higher reliability, reproducibility, and potentially lower
costs [1]. It has already been pointed out that accurate
analysis techniques are required in order to reduce neces-
sity for trimming, which is more difficult than for hybrid
integrated circuits. Even in this case, however, full-wave
analyses are necessary to study propagation effects in
active devices [2]. Gigabit logic is dnother area where
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propagation effects have to be accounted for through the-
use of accurate theoreticdl analyses [3].

Slow-wave propagation in metal-insulator—semiconduc-
tor and Schottky-contact planar transmission lines has
been both experimentally observed and theoretically ex-
plained from different points of view [3]-[10]. The slow-
wave properties of such transmission lines can be used to
reduce the dimensions and cost of distributed elements to
realize delay lines or, when Schottky-contact lines are used,
for variable phase shifters, voltage-tunable filters, etc.

A drawback of these slow-wave structures is the loss
associated with the semiconducting layer. As an example,
the GaAs metal-insulator—semiconductor coplanar wave-
guide (MISCPW) experimented by Hasegawa and his co-
workers [6], [11] presented an attenuation greater than 1
dB/mm, with a slowing factor of about 30 at the frequency
of 1 GHz. Since losses and slow-wave effects depend on
the distribution of the electromagnetic field inside the
various regions of the structure, accurate analyses are
required to determine the most favorable conditions for the
practical use of such transmission lines.

An extensive study of the properties of MISCPW, based
on a full-wave technique, is presented in this paper. The
influence of the various structural parameters on the char-
acteristics of the structure is investigated, together with the
effect of the addition of a back conducting plane, which
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